avis_client.MlApi
All URIs are relative to http://localhost:8000
Method | HTTP request | Description |
---|---|---|
ml_model_create | POST /api/ml/model/ | |
ml_model_destroy | DELETE /api/ml/model/{id}/ | |
ml_model_inference | POST /api/ml/model/{id}/infer/ | |
ml_model_list | GET /api/ml/model/ | |
ml_model_partial_update | PATCH /api/ml/model/{id}/ | |
ml_model_retrieve | GET /api/ml/model/{id}/ | |
ml_model_type_create | POST /api/ml/model-type/ | |
ml_model_type_destroy | DELETE /api/ml/model-type/{id}/ | |
ml_model_type_list | GET /api/ml/model-type/ | |
ml_model_type_partial_update | PATCH /api/ml/model-type/{id}/ | |
ml_model_type_retrieve | GET /api/ml/model-type/{id}/ | |
ml_model_type_update | PUT /api/ml/model-type/{id}/ | |
ml_model_update | PUT /api/ml/model/{id}/ |
ml_model_create
MLModel ml_model_create(ml_model_request)
A viewset for ML models. It filters results based on the permissions granted to all the user's team(s). A user will only be able to interact with an ML models if at least one of the teams they are a member of has access to it.
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model import MLModel
from avis_client.models.ml_model_request import MLModelRequest
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
ml_model_request = avis_client.MLModelRequest() # MLModelRequest |
try:
api_response = api_instance.ml_model_create(ml_model_request)
print("The response of MlApi->ml_model_create:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_create: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
ml_model_request | MLModelRequest |
Return type
Authorization
HTTP request headers
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
201 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_destroy
ml_model_destroy(id)
A viewset for ML models. It filters results based on the permissions granted to all the user's team(s). A user will only be able to interact with an ML models if at least one of the teams they are a member of has access to it.
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model.
try:
api_instance.ml_model_destroy(id)
except Exception as e:
print("Exception when calling MlApi->ml_model_destroy: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model. |
Return type
void (empty response body)
Authorization
HTTP request headers
- Content-Type: Not defined
- Accept: Not defined
HTTP response details
Status code | Description | Response headers |
---|---|---|
204 | No response body | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_inference
MLModel ml_model_inference(id, azure_ml_inference_request)
Infer a result from the model. This is a passthrough to the model's inference endpoint running somewhere else. The request body is passed through to the model.
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.azure_ml_inference_request import AzureMLInferenceRequest
from avis_client.models.ml_model import MLModel
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model.
azure_ml_inference_request = avis_client.AzureMLInferenceRequest() # AzureMLInferenceRequest |
try:
api_response = api_instance.ml_model_inference(id, azure_ml_inference_request)
print("The response of MlApi->ml_model_inference:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_inference: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model. | |
azure_ml_inference_request | AzureMLInferenceRequest |
Return type
Authorization
HTTP request headers
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_list
PaginatedMLModelList ml_model_list(page=page, page_size=page_size)
A viewset for ML models. It filters results based on the permissions granted to all the user's team(s). A user will only be able to interact with an ML models if at least one of the teams they are a member of has access to it.
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.paginated_ml_model_list import PaginatedMLModelList
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
page = 56 # int | A page number within the paginated result set. (optional)
page_size = 56 # int | Number of results to return per page. (optional)
try:
api_response = api_instance.ml_model_list(page=page, page_size=page_size)
print("The response of MlApi->ml_model_list:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_list: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
page | int | A page number within the paginated result set. | [optional] |
page_size | int | Number of results to return per page. | [optional] |
Return type
Authorization
HTTP request headers
- Content-Type: Not defined
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_partial_update
MLModel ml_model_partial_update(id, patched_ml_model_request=patched_ml_model_request)
A viewset for ML models. It filters results based on the permissions granted to all the user's team(s). A user will only be able to interact with an ML models if at least one of the teams they are a member of has access to it.
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model import MLModel
from avis_client.models.patched_ml_model_request import PatchedMLModelRequest
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model.
patched_ml_model_request = avis_client.PatchedMLModelRequest() # PatchedMLModelRequest | (optional)
try:
api_response = api_instance.ml_model_partial_update(id, patched_ml_model_request=patched_ml_model_request)
print("The response of MlApi->ml_model_partial_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_partial_update: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model. | |
patched_ml_model_request | PatchedMLModelRequest | [optional] |
Return type
Authorization
HTTP request headers
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_retrieve
MLModel ml_model_retrieve(id)
A viewset for ML models. It filters results based on the permissions granted to all the user's team(s). A user will only be able to interact with an ML models if at least one of the teams they are a member of has access to it.
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model import MLModel
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model.
try:
api_response = api_instance.ml_model_retrieve(id)
print("The response of MlApi->ml_model_retrieve:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_retrieve: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model. |
Return type
Authorization
HTTP request headers
- Content-Type: Not defined
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_type_create
MLModelType ml_model_type_create(ml_model_type_request=ml_model_type_request)
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model_type import MLModelType
from avis_client.models.ml_model_type_request import MLModelTypeRequest
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
ml_model_type_request = avis_client.MLModelTypeRequest() # MLModelTypeRequest | (optional)
try:
api_response = api_instance.ml_model_type_create(ml_model_type_request=ml_model_type_request)
print("The response of MlApi->ml_model_type_create:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_type_create: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
ml_model_type_request | MLModelTypeRequest | [optional] |
Return type
Authorization
HTTP request headers
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
201 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_type_destroy
ml_model_type_destroy(id)
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model type.
try:
api_instance.ml_model_type_destroy(id)
except Exception as e:
print("Exception when calling MlApi->ml_model_type_destroy: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model type. |
Return type
void (empty response body)
Authorization
HTTP request headers
- Content-Type: Not defined
- Accept: Not defined
HTTP response details
Status code | Description | Response headers |
---|---|---|
204 | No response body | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_type_list
PaginatedMLModelTypeList ml_model_type_list(page=page, page_size=page_size)
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.paginated_ml_model_type_list import PaginatedMLModelTypeList
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
page = 56 # int | A page number within the paginated result set. (optional)
page_size = 56 # int | Number of results to return per page. (optional)
try:
api_response = api_instance.ml_model_type_list(page=page, page_size=page_size)
print("The response of MlApi->ml_model_type_list:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_type_list: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
page | int | A page number within the paginated result set. | [optional] |
page_size | int | Number of results to return per page. | [optional] |
Return type
Authorization
HTTP request headers
- Content-Type: Not defined
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_type_partial_update
MLModelType ml_model_type_partial_update(id, patched_ml_model_type_request=patched_ml_model_type_request)
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model_type import MLModelType
from avis_client.models.patched_ml_model_type_request import PatchedMLModelTypeRequest
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model type.
patched_ml_model_type_request = avis_client.PatchedMLModelTypeRequest() # PatchedMLModelTypeRequest | (optional)
try:
api_response = api_instance.ml_model_type_partial_update(id, patched_ml_model_type_request=patched_ml_model_type_request)
print("The response of MlApi->ml_model_type_partial_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_type_partial_update: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model type. | |
patched_ml_model_type_request | PatchedMLModelTypeRequest | [optional] |
Return type
Authorization
HTTP request headers
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_type_retrieve
MLModelType ml_model_type_retrieve(id)
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model_type import MLModelType
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model type.
try:
api_response = api_instance.ml_model_type_retrieve(id)
print("The response of MlApi->ml_model_type_retrieve:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_type_retrieve: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model type. |
Return type
Authorization
HTTP request headers
- Content-Type: Not defined
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_type_update
MLModelType ml_model_type_update(id, ml_model_type_request=ml_model_type_request)
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model_type import MLModelType
from avis_client.models.ml_model_type_request import MLModelTypeRequest
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model type.
ml_model_type_request = avis_client.MLModelTypeRequest() # MLModelTypeRequest | (optional)
try:
api_response = api_instance.ml_model_type_update(id, ml_model_type_request=ml_model_type_request)
print("The response of MlApi->ml_model_type_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_type_update: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model type. | |
ml_model_type_request | MLModelTypeRequest | [optional] |
Return type
Authorization
HTTP request headers
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ml_model_update
MLModel ml_model_update(id, ml_model_request)
A viewset for ML models. It filters results based on the permissions granted to all the user's team(s). A user will only be able to interact with an ML models if at least one of the teams they are a member of has access to it.
Example
- Api Key Authentication (cookieAuth):
- Api Key Authentication (ApiKeyAuth):
import time
import os
import avis_client
from avis_client.models.ml_model import MLModel
from avis_client.models.ml_model_request import MLModelRequest
from avis_client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost:8000
# See configuration.py for a list of all supported configuration parameters.
configuration = avis_client.Configuration(
host = "http://localhost:8000"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# Configure API key authorization: cookieAuth
configuration.api_key['cookieAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['cookieAuth'] = 'Bearer'
# Configure API key authorization: ApiKeyAuth
configuration.api_key['ApiKeyAuth'] = os.environ["API_KEY"]
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['ApiKeyAuth'] = 'Bearer'
# Enter a context with an instance of the API client
with avis_client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = avis_client.MlApi(api_client)
id = 56 # int | A unique integer value identifying this ml model.
ml_model_request = avis_client.MLModelRequest() # MLModelRequest |
try:
api_response = api_instance.ml_model_update(id, ml_model_request)
print("The response of MlApi->ml_model_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling MlApi->ml_model_update: %s\n" % e)
Parameters
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this ml model. | |
ml_model_request | MLModelRequest |
Return type
Authorization
HTTP request headers
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
HTTP response details
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]